Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 352: 124146, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740246

RESUMO

The bacterial composition of and the circulation of antimicrobial resistance genes (ARGs) in waste from Brazilian swine farms are still poorly understood. Considering that antimicrobial resistance (AMR) is one of the main threats to human, animal, and environmental health, the need to accurately assess the load of ARGs released into the environment is urgent. Therefore, this study aimed to characterize the microbiota in a swine farm in southern Brazil and the resistome in swine farm wastewater treated in a series of waste stabilization ponds (WSPs). Samples were collected from farm facilities and the surrounding environment, representing all levels of swine manure within the treatment system. Total metagenomic sequencing was performed on samples from WSPs, and 16S-rDNA sequencing was performed on all the collected samples. The results showed increased bacterial diversity in WSPs, characterized by the presence of Caldatribacteriota, Cloacimonadota, Desulfobacterota, Spirochaetota, Synergistota, and Verrucomicrobiota. Furthermore, resistance genes to tetracyclines, lincosamides, macrolides, rifamycin, phenicol, and genes conferring multidrug resistance were detected in WSPs samples. Interestingly, the most abundant ARG was linG, which confers resistance to the lincosamides. Notably, genes conferring macrolide (mphG and mefC) and rifamycin (rpoB_RIF) resistance appeared in greater numbers in the late WSPs. These drugs are among the high-priority antibiotic classes for human health. Moreover, certain mobile genetic elements (MGEs) were identified in the samples, notably tnpA, which was found in high abundance. These elements are of particular concern due to their potential to facilitate the dissemination of ARGs among bacteria. In summary, the results indicate that, in the studied farm, the swine manure treatment system could not eliminate ARGs and MGEs. Our results validate concerns about Brazil's swine production system. The misuse and overuse of antimicrobials during animal production must be avoided to mitigate AMR.

2.
World J Microbiol Biotechnol ; 40(1): 9, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938391

RESUMO

The aim of the study was to track the spread of antimicrobial resistance among the different sectors of One Health through the detection of Multidrug-Efflux-System in multidrug-resistant Staphylococcus aureus isolates. Multidrug-resistant (MDR) and methicillin-resistant (MRSA) S. aureus isolates were selected: 25 of human, one of animal and eight of food origin. The efflux system genes norA, norB, norC, LmrS, tet38 and msrA were screened by PCR. The activity of the efflux systems was determined by the minimum inhibitory concentration (MIC) of tetracycline and ciprofloxacin in the presence and absence of CCCP and in the quantification of ethidium bromide efflux. Furthermore, biofilm formation was determined in the presence and absence of the CCCP. The molecular epidemiology of the isolates was traced with the aid of PFGE. The gene norC was the most prevalent, detected in all isolates and msrA was the least prevalent, detected in only two isolates from humans. There was no difference in the MICs of tetracycline and ciprofloxacin in the presence of CCCP, but 55.9% of isolates showed ethidium bromide efflux. The presence of CCCP decreased the biofilm formation. Regarding the molecular epidemiology, in three clusters was a mixture of the isolates from different origins. Therefore, S. aureus MDR with active multidrug efflux systems are circulating between One Health domains and it is necessary to consider strategies to decrease this circulation in order to prevent the dissemination of resistance mediated by MES.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Saúde Única , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus/genética , Carbonil Cianeto m-Clorofenil Hidrazona , Etídio , Staphylococcus aureus Resistente à Meticilina/genética , Tetraciclina/farmacologia , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia
3.
Gene ; 855: 147131, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539044

RESUMO

Staphylococcus aureus is the main etiological agent of mastitis in small ruminants worldwide. This disease has a difficult cure and possible relapse, leading to significant economic losses in production, milk quality and livestock. This study performed comparative genomic analyses between 73 S. aureus genomes from different hosts (human, bovine, pig and others). This work isolated and sequenced 12 of these genomes from ovine. This study contributes to the knowledge of genomic specialization and the role of specific genes in establishing infection in ovine mastitis-associated S. aureus. The genomes of S. aureus isolated from sheep maintained a higher representation when grouped with clonal complexes 130 and 133. The genomes showed high genetic similarity, the species pan-genome consisting of 4200 genes (central = 2008, accessory = 1559 and unique = 634). Among these, 277 unique genes were related to the genomes isolated from sheep, with 39.6 % as hypothetical proteins, 6.4 % as phages, 6.4 % as toxins, 2.9 % as transporters, and 44.7 % as related to other proteins. Furthermore, at the pathogen level, they showed 80 genes associated with virulence factors and 19 with antibiotic resistance shared in almost all isolates. Although S. aureus isolated from ovine showed susceptibility to antimicrobials in vitro, ten genes were predicted to be associated with antibiotic inactivation and efflux pump, suggesting resistance to gentamicin and penicillin. This work may contribute to identifying genes acquired by horizontal transfer and their role in host adaptation, virulence, bacterial resistance, and characterization of strains affecting ovine.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Feminino , Animais , Bovinos , Ovinos/genética , Humanos , Suínos , Fatores de Virulência/genética , Staphylococcus aureus/genética , Adaptação ao Hospedeiro , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Ruminantes/genética , Genômica , Sequências Repetitivas Dispersas , Mastite Bovina/genética , Mastite Bovina/microbiologia
4.
Microb Pathog ; 174: 105950, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36528325

RESUMO

Prototheca bovis has been associated with several cases of mastitis in cattle but no record of intramammary infections has been reported in goats. This infection does not respond to available treatments and the disposal recommendation of affected animals cause great damage to the dairy industry. Alternatives for dealing with infections caused by Prototheca spp. are required worldwide. In vitro results suggest polypyrrole as promising molecule for combating this alga, because an algaecide effect was observed on tested Prototheca spp. isolates. Thus, this study evaluated goats as an experimental model for intramammary infection by P. bovis and a protocol for treating these animals with an intramammary polypyrrole solution. The possibility of P. bovis promoting an intramammary infection in goats was experimentally proven, demonstrating this species as an important model for studies involving algae mastitis. Furthermore, polypyrrole reduced the counts of Prototheca sp. in the analyzed samples, showing potential to fight this microorganism also in vivo. The results obtained in this study demonstrate the ability of P. bovis to colonize breast tissue in lactating goats and the highly soluble molecule of polypyrrole has potential use for the treatment of protothecosis.


Assuntos
Mastite Bovina , Prototheca , Feminino , Animais , Bovinos , Humanos , Polímeros/uso terapêutico , Lactação , Pirróis/uso terapêutico , Cabras , Mastite Bovina/tratamento farmacológico
5.
Microbes Infect ; 25(1-2): 105018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35940401

RESUMO

The Brucellaceae family comprises microorganisms similar both phenotypically and genotypically, making it difficult to identify the etiological agent of these infections. This study reports the first isolation, identification, and characterization of Pseudochrobactrum saccharolyticum (strain 115) from Latin America. Strain 115 was isolated in 2007 from a bovine in Brazil and was initially classified as Brucella spp. by classical microbiological tests and bcsp31 PCR. The antimicrobial susceptibility of strain 115 was tested against drugs used to treat human brucellosis by minimal inhibitory concentration test. Subsequently, the whole genome of the strain was sequenced, assembled, and characterized. Phylogenetic trees built from 16S rRNA and recA gene sequences enabled the classification of strain 115 as Pseudochrobactrum spp. Phylogenomic analysis using Single Nucleotide Polymorphisms and Average Nucleotide Identity allowed the classification of the strain as P. saccharolyticum. Additionally, a Tetra Correlation Search identified one related genome from the same species, which was compared with strain 115 by analyzing genomic islands. This is the first identification and whole-genome sequence of P. saccharolyticum in Latin America and highlights a challenge in the diagnosis of bovine brucellosis, which could be solved by including the sequencing of 16S rRNA and recA genes in routine diagnostics.


Assuntos
Brucellaceae , Animais , Bovinos , Humanos , RNA Ribossômico 16S/genética , Filogenia , América Latina , Brucellaceae/genética , DNA Bacteriano/genética
6.
Microorganisms ; 10(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336163

RESUMO

Antibiotic resistance is one of the biggest health challenges of our time. We are now facing a post-antibiotic era in which microbial infections, currently treatable, could become fatal. In this scenario, antimicrobial peptides such as bacteriocins represent an alternative solution to traditional antibiotics because they are produced by many organisms and can inhibit bacteria, fungi, and/or viruses. Herein, we assessed the antimicrobial activity and biotechnological potential of 54 Streptococcus agalactiae strains isolated from bovine mastitis. Deferred plate antagonism assays revealed an inhibition spectrum focused on species of the genus Streptococcus-namely, S. pyogenes, S. agalactiae, S. porcinus, and S. uberis. Three genomes were successfully sequenced, allowing for their taxonomic confirmation via a multilocus sequence analysis (MLSA). Virulence potential and antibiotic resistance assessments showed that strain LGMAI_St_08 is slightly more pathogenic than the others. Moreover, the mreA gene was identified in the three strains. This gene is associated with resistance against erythromycin, azithromycin, and spiramycin. Assessments for secondary metabolites and antimicrobial peptides detected the bacteriocin zoocin A. Finally, comparative genomics evidenced high similarity among the genomes, with more significant similarity between the LGMAI_St_11 and LGMAI_St_14 strains. Thus, the current study shows promising antimicrobial and biotechnological potential for the Streptococcus agalactiae strains.

7.
Microb Pathog ; 165: 105453, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217180

RESUMO

There is not a consensus between the presence of the genotypic resistance marker gene and the phenotypic resistance to ß-lactams in Staphylococcus aureus, which means, positive S. aureus blaZ isolates demonstrating sensitivity to ß-lactams. The present study aimed to characterize the blaZ, blaR1 and blaI genes, identify and evaluate single nucleotide polymorphisms (SNPs) and their relationship with ß-lactam resistance in samples of Staphylococcus aureus obtained from cases of bovine mastitis. Five isolates (two resistant and three sensitive to oxacillin) of Staphylococcus aureus with detected production of beta-lactamase, previously evaluated as containing the blaZ gene and negative for the mecA and mecC genes, had the bla operon completely sequenced. Impacts on the protein sequence due to the detected polymorphisms were evaluated by modeling the proteins encoded by the blaZ, blaR1 and blaI genes using a three-dimensional model structure obtained from the Protein Data Bank (PDB) database. Fifteen SNPs were detected in the blaZ gene, 30 in the blaR1 gene and three in the blaI gene. These SNPs caused alterations in amino acid sites. Deleterious mutations were detected in the blaZ gene (E146G, P218S, Y221C) and the blaR1 gene (K481E). Molecular docking analysis revealed that polymorphisms in the blaZ gene may explain the phenotypic sensitivity in isolates that contain the resistance marker gene. Although sensitive and resistant isolates encode beta-lactamase, these proteins are functionally altered due to a change in the binding site with the antibiotic.


Assuntos
Mastite Bovina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Feminino , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Infecções Estafilocócicas/veterinária , Staphylococcus aureus , Resistência beta-Lactâmica/genética , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA